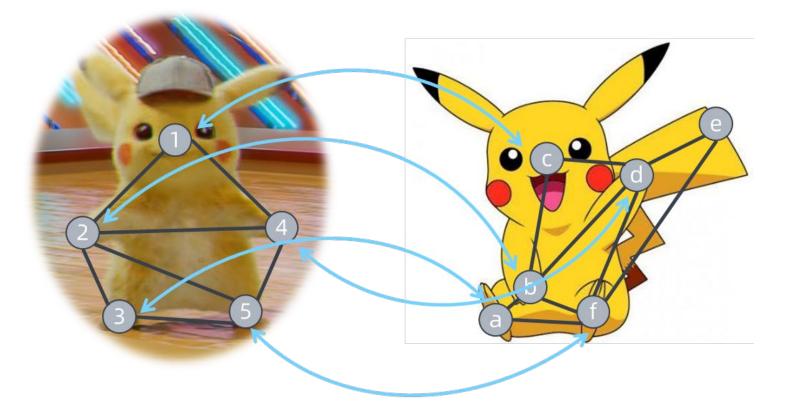
Deep Embedding Networks for Graph Matching

Runzhong Wang - Shanghai Jiao Tong University

R. Wang, J. Yan, X. Yang. "Learning Combinatorial Embedding Networks for Deep Graph Matching." In ICCV 2019.

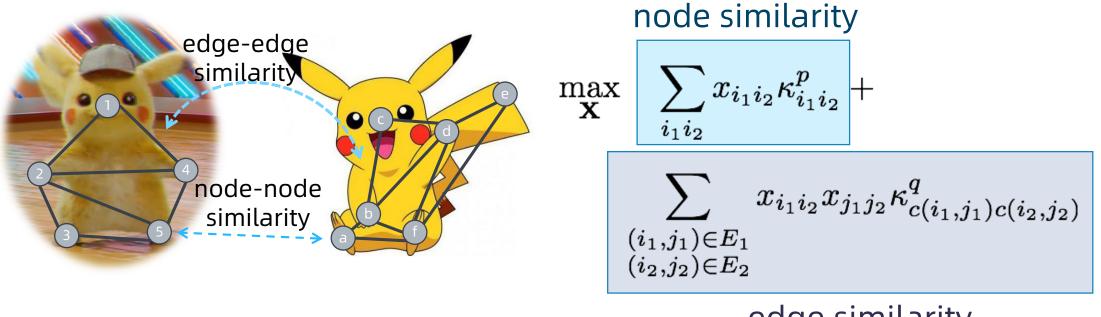
Seoul, Korea. 2019.10.30

Graph Matching



Graph matching finds node correspondence among multiple graphs.

Formulation via Affinity Maximization

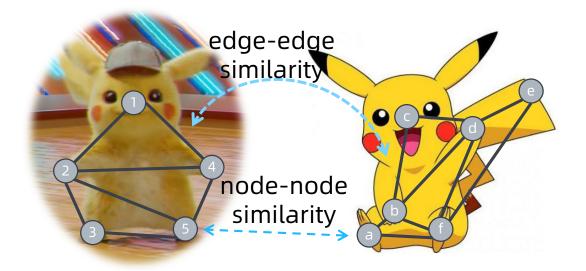


edge similarity

Graph matching incorporates both **first order (node-node)** and **second order (edge-edge)** similarities.

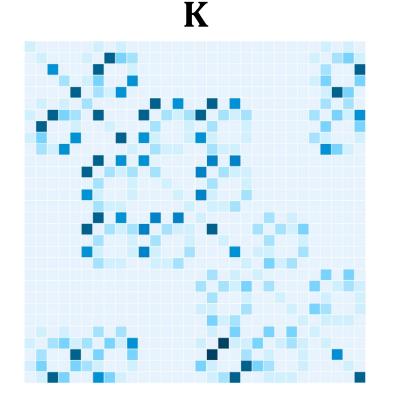
S. Gold and A. Rangarajan. "A graduated assignment algorithm for graph matching," IEEE Transaction on PAMI, 1996

Graph Matching via <u>Affinity Matrix</u>



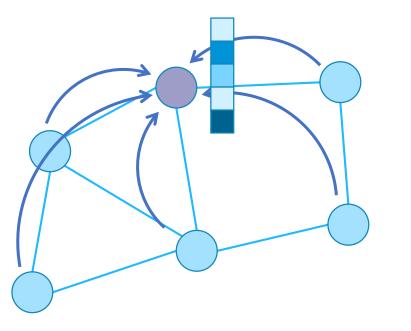
Formulated as quadratic assignment problem (QAP): $\max_{\mathbf{X}} \operatorname{vec}(\mathbf{X})^T \quad \mathbf{K} \operatorname{vec}(\mathbf{X})$ s.t. $\mathbf{X} \in \{0,1\}^{5 \times 6}, \mathbf{X1} \le \mathbf{1}, \mathbf{X}^T \mathbf{1} \le \mathbf{1}$ NP-Hard

M. Leordeanu and M. Hebert. "A spectral technique for correspondence problems using pairwise constraints." in ICCV, 2005

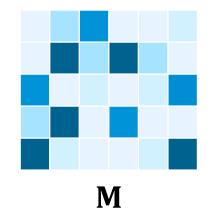


Diagonal elements – node similarity + Off-diagonal elements – edge similarity

Graph Embedding and Linear Matching



• Linear similarity matrix:



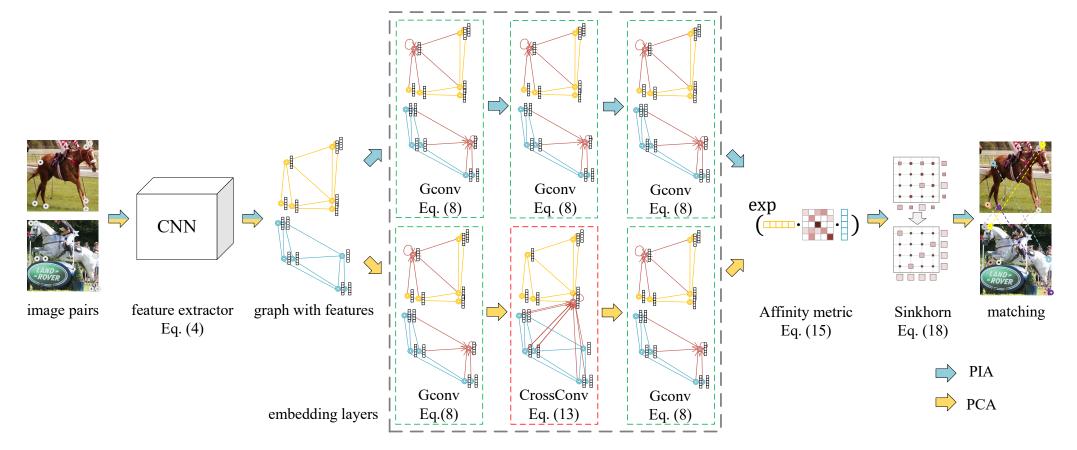
- Graph embedding embeds graph structure (nodes and edges) into node embedding vectors.
- Graph affinity can be evaluated between node embeddings.

• We simplify the NP-hard QAP into Linear Matching problem.

$$\max_{\mathbf{X}} \operatorname{tr}(\mathbf{X}^{\mathsf{T}} \mathbf{M})$$

s.t. $\mathbf{X} \in \{0,1\}^{5 \times 6}, \mathbf{X}\mathbf{1} \le \mathbf{1}, \mathbf{X}^{\mathsf{T}}\mathbf{1} \le \mathbf{1}$

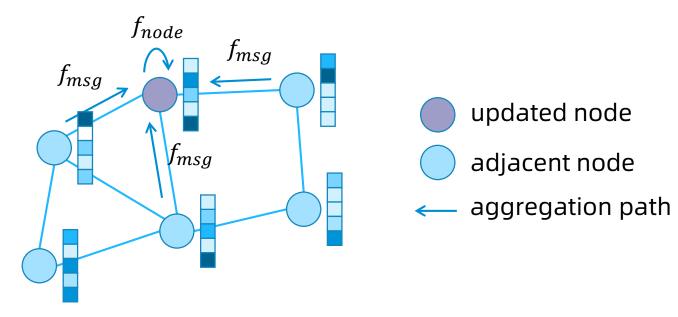
Our approach



- First end-to-end solution in graph matching incorporating embedding.
- NP-hard QAP simplified to LAP (solved exactly) thanks to embedding.
- Combinatorial **permutation loss** for supervision.

GConv

GConv is mainly inspired by <u>Graph Convolutional Network (GCN)</u>. Feature aggregated from adjacent nodes.

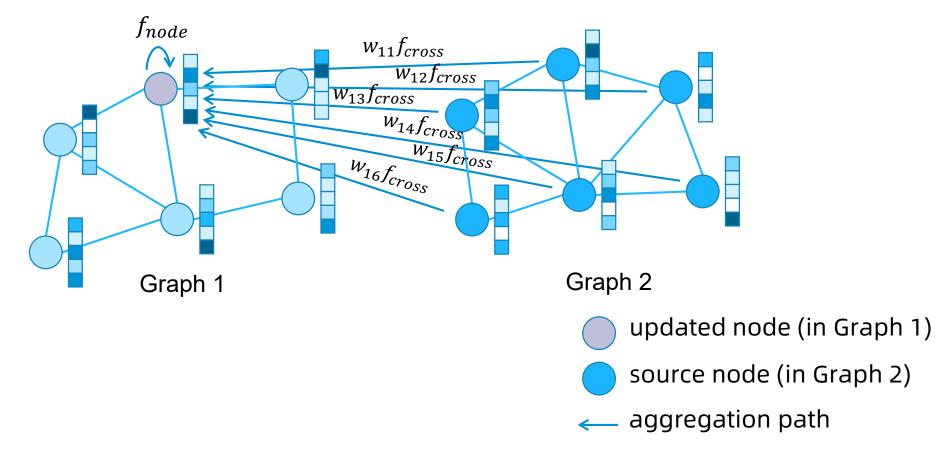


 f_{node} and f_{msg} are neural networks and weight-sharing among all nodes.

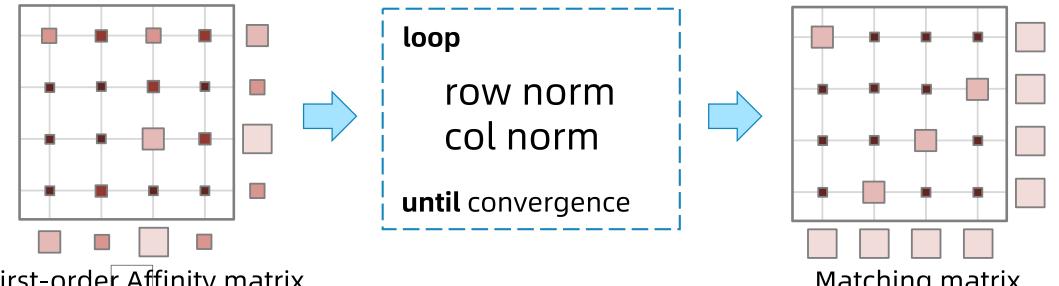
Kipf and Welling, "Semi-Supervised Classification with Graph Convolutional Networks." ICLR 2017.

CrossConv

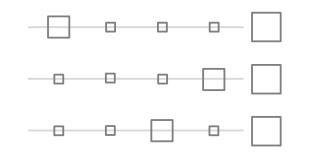
Features are aggregated from nodes with similar features across graphs.



Sinkhorn



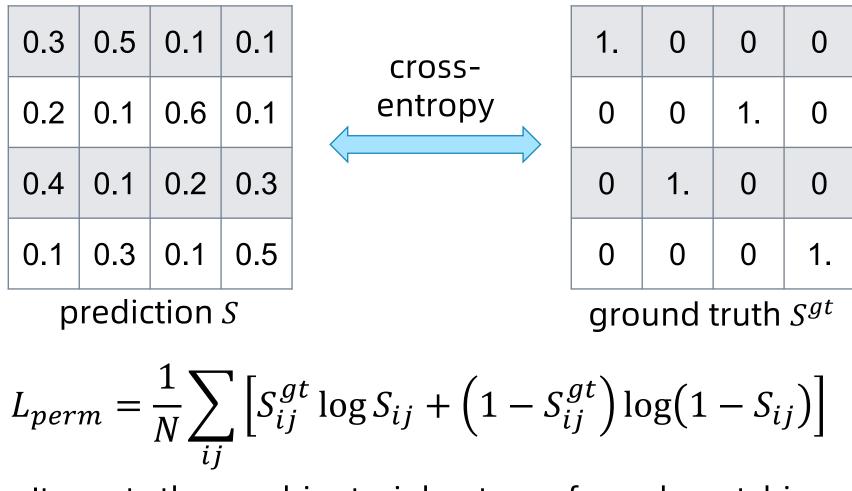
First-order Affinity matrix (non-negative matrix)



Matching matrix (doubly-stochastic matrix)

Fully differentiable! (for end-end training)

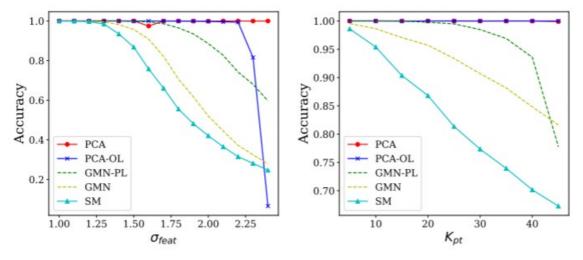
Permutation Loss



It meets the combinatorial nature of graph matching.

State-of-the-art Performance on

• Synthetic Data



• Real Image Datasets

method	aero	bike	bird	boat	bottle	bus	car	cat	chair	cow	table	dog	horse	mbike	person	plant	sheep	sofa	train	tv	mean
GMN	31.9	47.2	51.9	40.8	68.7	72.2	53.6	52.8	34.6	48.6	72.3	47.7	54.8	51.0	38.6	75.1	49.5	45.0	83.0	86.3	55.3
GMN-PL	31.1	46.2	58.2	45.9	70.6	76.4	61.2	61.7	35.5	53.7	58.9	57.5	56.9	49.3	34.1	77.5	57.1	53.6	83.2	88.6	57.9
PIA-OL	39.7	57.7	58.6	47.2	74.0	74.5	62.1	66.6	33.6	61.7	65.4	58.0	67.1	58.9	41.9	77.7	64.7	50.5	81.8	89.9	61.6
PIA	41.5	55.8	60.9	51.9	75.0	75.8	59.6	65.2	33.3	65.9	62.8	62.7	67.7	62.1	42.9	80.2	64.3	59.5	82.7	90.1	63.0
PCA	40.9	55.0	65.8	47.9	76.9	77.9	63.5	67.4	33.7	65.5	63.6	61.3	68.9	62.8	44.9	77.5	67.4	57.5	86.7	90.9	63.8

method	face	m-bike	car	duck	w-bottle
HARG-SSVM [6]	91.2	44.4	58.4	55.2	66.6
GMN-VOC [45]	98.1	65.0	72.9	74.3	70.5
GMN-Willow [45]	99.3	71.4	74.3	82.8	76.7
PCA-VOC	100.0	69.8	78.6	82.4	95.1
PCA-Willow	100.0	76.7	84.0	93.5	96.9

Thank you!

- Paper: <u>https://arxiv.org/abs/1904.00597</u>
- Code: <u>https://github.com/Thinklab-SJTU/PCA-GM</u>
- Contact
 - Runzhong Wang: <u>runzhong.wang@sjtu.edu.cn</u>
 - Prof. Junchi Yan: yanjunchi@sjtu.edu.cn
- Homepage of our lab: <u>http://thinklab.sjtu.edu.cn</u>

 \downarrow Code on GitHub \downarrow

